
Forecasting in Time-Series Data: An implementation
in Python

Prahald Siwakoti

March 17, 2025

Time series data are data from observations that are collected over time [1]. These
kinds of data are prevalent in various fields such as economics, finance, weather forecast-
ing, and many others. One of the main characteristics of time series data is the serial
dependence of the observations. This is in violation of the assumption of independence
that many standard statistical methods are built on. Therefore, specialized methods are
required to analyze and forecast time series data.

The objectives of time series analysis commonly include Inference, Forecasting, and
Smoothing. Inference aims to understand the underlying process that generated the
data. Forecasting involves predicting future values of the time series based on historical
observations. Smoothing is used to extract the underlying trend from the data and to fill
in missing values.

In this document, we will discuss forecasting from time-series data and explore some
models to achieve this:

• Time Series models: These models leverages the serial dependence of the data
for predictions. We will implement the Seasonal ARIMA model with exogenous
variables. See Appendix 6.1 for a brief review of the ARIMA model.

• Decision-tree-based regression models: These models extrapolate trends to forecast
future values. We will implement the XgBoost [2] model, which is a gradient boosted
decision tree algorithm known for its efficiency and accuracy.

• Neural network based models: Particularly Long Short-Term Memory (LSTM) net-
works, a variant of Recurrent Neural Networks (RNN) that are designed to capture
long-term dependencies in the data. See Appendix 6.3 for more details.

In practice, the choice of forecasting method depends on the data and the goals of the
analysis. Often times, a combination of methods is used to improve the accuracy of the
forecast.

Using a simple time series revenue example data from prophet, we will implement
the above mentioned models in python. We will compare the preformance between these
models using performance metrics. We will then visualize the forecasted values with the
help of Python libraries such as matplotlib and seaborn. The complete code is available
at GitHub.

1

https://github.com/facebook/prophet/blob/main/examples/example_retail_sales.csv?raw=true
https://github.com/siwa-p/Time-Series-Forecasting

1 Data preparation

The data is loaded using the following code:

import pandas as pd

url = ’https://github.com/facebook/prophet/blob/main/examples/\\

example_retail_sales.csv?raw=true’

data = pd.read_csv(url)

The data consists of two columns: ’ds’ and ’y’. The ’ds’ column contains the date of the
observation, and the ’y’ column contains the revenue for that date. The data is in a long
format, which is suitable for time series analysis.

In the next few sections, we will discuss preprocessing steps for each of the three models
we used for forecasting: ARIMA, XGBoost, and LSTM. For consistency of comparison,
we will use the same same splitting method for training and testing sets (split at 80% of
the length of the data without shuffling the data (to preserve time dependence)). The
training set will be used to fit the model, and the testing set will be used to evaluate the
performance of the model.

1.1 ARIMA Model

For ARIMA models, as the data is already in the long format, we do not need to do much
preprocessing. However, we need to convert the ’ds’ column to a datetime format. This
can be done using the following code:

data[’ds’] = pd.to_datetime(data[’ds’])

Convert the ’ds’ column to datetime

1.2 XgBoost Model

For the regression model, we will create some new features in addition to the revenue
values. We will create two lag features: ’lag1’ and ’lag2’, which are the revenue values
from the previous day and the day before that respectively. We will also create features
for the month and the year, which are treated as categorical variables.

The ’lag’ features are obtained using the handy shift() method in pandas. The fol-
lowing code implements this feature engineering:

data[’lag1’] = data[’y’].shift(1)

data[’lag2’] = data[’y’].shift(2)

data[’month’] = data[’ds’].dt.month

data[’year’] = data[’ds’].dt.year

2 LSTM Model

The Data preprocessing for LSTM is a little involved. First, we want to generate some
features from the data. I chose to use month variable from the date column. Unlike
the decision tree-based models, LSTM models process data in a sequential manner. This
means that it is important for us to feed the data in proper order. Since, the model
cannot recognize months 1-12 as a complete cycle, we need to convert the month variable
into a sine and cosine function. This is done using the following code:

2

import numpy as np

data[’month_sin’] = np.sin(2 * np.pi * data[’month’] / 12)

data[’month_cos’] = np.cos(2 * np.pi * data[’month’] / 12)

If more features are available, the implementation can be easily extended to add more
engineered features. This often results in improved accuracy of the model.

Next, a linear regression is fitted to the data to obtain the trend. The linear trend
is then subtracted from the data to obtain the residuals. The residuals are then scaled
using the MinMaxScaler from sklearn. This is done to ensure that the data is in the
range [0, 1] before feeding it to the model.

Then, we need a method to feed this data sequentially to the model. This is done
using a sliding window approach. That is, the data from time t-w to time t, is used to
predict the next time step (t+1). The size of window, w, governs how much data you
are allowed to look at when you make the prediction. This is also called the look back
period. The following code implements the sliding window approach:

def create_dataset(dataset, lookback):

X, y = [], []

for i in range(len(dataset)-lookback):

feature = dataset[i:i+lookback]

target = dataset[i+lookback]

X.append(feature)

y.append(target)

return torch.tensor(X), torch.tensor(y)

Now, we use the DataLoader class from PyTorch to create batches of data from the
dataset.

3 Model Implementation

In this section, we will discuss each model in detail and show their implementation in
Python.

3.1 ARIMA Model

Some exploratory data analysis is done to determine the order of the ARIMA model.
A differencing of order 1 is sufficient to make the data stationary as supported by the
Dickey-Fuller test. The ACF and PACF plots, not shown here, are used to determine
the order of the AR and MA terms for the differenced data. ACF plot shows signs of
seasonality at lag 12 and cutoff at lag1, which suggests a seasonal AR term as well as
an AR(1) term might be appropriate. The PACF plot shows gradual tailing off over the
first few lags, with occassional spikes.

To make a proper assessment, we employed auto arima method from pmdarima li-
brary.

• ARMA(1,1,2) is found to be best model. i.e. AR(1) and MA(2) with first order
differencing.

• Seasonal differencing (D=1) with two seasonal AR terms (SAR(2)) and one seasonal
MA term (SMA(1)) for the 12-month seasonality

3

https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima.html

Figure 1: ARIMA Model Forecast

The following code implements the ARIMA model:

Define the SARIMAX model

import statsmodels.api as sm

model = sm.tsa.SARIMAX(

train[’revenue’], # Use revenue data

order=(1,1,2), # (p,d,q)

seasonal_order=(2,1,1,12), # (P,D,Q,S) for 12-month seasonality

enforce_stationarity=False,

enforce_invertibility=False

)

Fit the model

results = model.fit()

Forecast

forecast_steps = len(test) # Forecast same number of steps as test set

forecast = results.get_forecast(steps=forecast_steps)

forecast_index = test.index

Extract prediction and confidence intervals

forecast_mean = forecast.predicted_mean

forecast_ci = forecast.conf_int()

Figure 1 shows the forecasted values along with the confidence intervals. The fore-
casted values are in red, the actual test values are shown in green. The training data
is shown in blue and also shown are the confidence intervals of the forecasted values.
The model does very well in capturing the trend and seasonality of the data. The mean
absolute error (MAE), defined as the average of the absolute differences between the fore-
casted and actual values, is 12,417.14 USD. The mean absolute percentage error (MAPE),
defined as the average of the absolute percentage differences between the forecasted and
actual values, is 2.86%.

4

3.2 XgBoost Model

Tree-based models, like Random Forests and XGBoost, split the data into subsets based
on the values of the predictors. The goal in splitting, for regression problems, is to
minimize the mean squared error. Each leaf node then makes a prediction based on the
average of the observations in that node. These models are powerful and can capture
complex relationships in the data.

Care must be taken when using tree-based models for time series forecasting. The
data must be transformed into a format that the model can understand. This usually
involves de-trending, removing seasonality, creating lagged variables etc. The model can
then be trained on this data to make predictions.

Fit a Linear Trend Model

dt[’time_index’] = np.arange(len(dt)) # Create a time index for linear regression

trend_model = LinearRegression()

trend_model.fit(dt[[’time_index’]], dt[’sales’]) # Fit trend model

dt[’trend’] = trend_model.predict(dt[[’time_index’]]) # Extract trend component

Detrend the Data (Sales - Trend)

dt[’sales_detrended’] = dt[’sales’] - dt[’trend’]

train - test split

test_period_index = int(len(dt) * 0.8)

train_data = dt.iloc[:test_period_index]

test_data = dt.iloc[test_period_index:]

X_train = train_data.drop(columns=[’sales’, ’sales_detrended’, ’trend’, ’time_index’])

y_train = train_data[’sales_detrended’] # Train on detrended sales

X_test = test_data.drop(columns=[’sales’, ’sales_detrended’, ’trend’, ’time_index’])

y_test = test_data[’sales_detrended’]

Fit the XGBoost model

model = XGBRegressor()

model.fit(X_train, y_train)

Make predictions

y_train_pred_detrended = model.predict(X_train)

y_test_pred_detrended = model.predict(X_test)

y_train_pred = y_train_pred_detrended + train_data[’trend’].values

y_test_pred = y_test_pred_detrended + test_data[’trend’].values

Figure 2 shows the forecasted values along with the actual test values. The forecasted
values are in red, the actual test values are shown in green. The predicted training data
is shown in blue.

The model looks like it might be overfitting to the training data. Addition of ex-
ogenous variables might help remedy this. Regardless, the model is doing pretty well
in capturing the trend and seasonality of the data. The mean absolute error (MAE) is
12321.65 USD, and the mean absolute percentage error (MAPE) is 2.85%.

One of the advantages of tree-based models like XgBoost is their ability to provide

5

Figure 2: XgBoost Model Forecast

Figure 3: Feature Importance in XgBoost Model

feature importance scores. These scores indicate how much each feature contributes to
the predictive power of the model.

Figure 3 shows the feature importance plot for the XgBoost model. ’month’ and
’year’ are the most important features, followed by ’lag2’ and ’lag1’. This suggests that
the month and year have a significant impact on the revenue. The lag features are
also important, indicating that the revenue values from the previous days are useful
in predicting future revenue but considerably less important than the month and year
features.

3.3 LSTM Model

The LSTM model is implemented using the PyTorch library. The model consists of an
bidirectional doubly stacked LSTM layer followed by a fully connected linear layer. The
model is trained using the AdamW optimizer and the Mean Squared Error (MSE) loss

6

function. The model is trained for 500 epochs with a batch size of 4. The following code
implements the LSTM model:

class Model(nn.Module):

def __init__(self):

super().__init__()

self.lstm = nn.LSTM(input_size=3, hidden_size=50, num_layers=2, \\

batch_first=True, dropout=0.2, bidirectional=True)

self.linear = nn.Linear(50*2, 3)

def forward(self, x):

x, _ = self.lstm(x)

x = self.linear(x)

return x

train the model

model = Model()

optimizer = optim.AdamW(model.parameters(), lr=0.0001)

loss_fn = nn.MSELoss()

loader = data.DataLoader(data.TensorDataset(X_train, y_train), \\

shuffle=False, batch_size=4)

n_epochs = 500

for epoch in range(n_epochs):

model.train()

for X_batch, y_batch in loader:

X_batch = X_batch.float()

y_batch = y_batch.float()

y_pred = model(X_batch)

y_pred = y_pred[:, -1, :] # Take only the last time step output

loss = loss_fn(y_pred, y_batch)

optimizer.zero_grad()

loss.backward()

optimizer.step()

Validation

if epoch % 50 != 0:

continue

model.eval()

with torch.no_grad():

X_train = X_train.float()

X_test = X_test.float()

y_pred = model(X_train)

y_pred = y_pred[:, -1, :] # Take only the last time step output

train_rmse = np.sqrt(loss_fn(y_pred, y_train).item())

y_pred = model(X_test)

y_pred = y_pred[:, -1, :] # Take only the last time step output

test_rmse = np.sqrt(loss_fn(y_pred, y_test).item())

print("Epoch %d: train RMSE %.4f, test RMSE %.4f" % \\

7

Figure 4: LSTM Model Forecast

(epoch, train_rmse, test_rmse))

Figure 4 shows the forecasted values along with the actual test values. The forecasted
values are in red, the actual test values are shown in green. The predicted training data
is shown in blue. The model does a good job of capturing the trend and seasonality of
the data. Unlike the XgBoost model, the LSTM model does not seem to be overfitting
to the training data. The mean absolute error (MAE) on test data is 8322.45 USD, and
the mean absolute percentage error (MAPE) is 1.95%.

4 Model Comparison

Table 1 shows the performance of the three models on the test data. The LSTM model
has the lowest MAE and MAPE, indicating that it is the best performing model. The
XgBoost model and the Seasonal ARIMA models are close in performance.

I should note that for the LSTM model, there is a window where no prediction is
obtained as the model works with a sliding window approach. This is why the LSTM
model has fewer predictions than the other models. This migh lower the MAE and MAPE
values as the model is not penalized for these missing values. However, the LSTM model
is still the best performing model in this comparison.

Model MAE in USD MAPE (%)
SARIMA 12417.14 2.86%
XgBoost 12321.65 2.85%
LSTM 8322.45 1.95%

Table 1: Model Comparison

5 Conclusion

In this document, we have discussed three methods for forecasting time series data:
ARIMA, XGBoost, and LSTM. We have implemented these methods using Python and

8

compared their performance using the Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE) as evaluation metrics. The results show that all three methods
can be used for time series forecasting, but the choice of method depends on the data
and the goals of the analysis.

Interpretability is an important aspect of time series forecasting models, as it allows
us to understand how the model makes predictions and to trust the results. Different
models offer varying levels of interpretability.

Statistical models, such as ARIMA, are generally more interpretable compared to
machine learning models. These models have clearly defined parameters that can be
directly understood in terms of their influence on the forecast. On the other hand,
tree-based methods and neural networks are often considered ”black-box” models due to
their complexity. However, techniques like feature importance, partial dependence plots,
and SHAP (SHapley Additive exPlanations) values can enhance their interpretability.
Among these, neural networks are the least interpretable. While methods exist to high-
light significant features and break down predictions into contributions from each input
feature, careful implementation is required, especially when interpretability is a critical
requirement.

In conclusion, while more complex models may offer better predictive performance,
they often come at the cost of interpretability. It is important to balance the need for
accurate forecasts with the need for understanding and trust in the model’s predictions.

6 Appendix

6.1 Time Series Analysis (Overview)

Time series Models are statistical models that are used to analyze and forecast time
series data. They are based on the assumption that the data is generated by a stochastic
process, which means that the future values of the time series depend on its past values.

A general approach is to identify if the time series data is stationary. A stationary
time series is one whose statistical properties such as mean, variance, and autocorrelation
do not change over time. This is important because many time series models assume
stationarity.

If the data are stationary, one needs to verify serial dependence. This is usually done
by examining the autocorrelation function (ACF) and partial autocorrelation function
(PACF) plots. These plots help identify the order of the autoregressive (AR) and moving
average (MA) terms in the model.

If the data are not stationary, one can try to coerce data into stationarity. This can
be done in one of three ways: differencing, transformation, or modeling the trend. Differ-
encing involves taking the difference between consecutive observations. Transformation
involves applying a function to the data to stabilize the variance. Modeling the trend
involves fitting a model to the trend and then modeling the residuals.

There are several time series models that can be used for forecasting for stationary
data. We will discuss some of the most common ones:

6.1.1 Autoregressive Model

The autoregressive (AR) model assumes that the current value of the time series is a
linear combination of the previous values. The AR model is denoted as AR(p), where p

9

is the order of the model. The model can be written as:

xt = ϕ1xt−1 + ϕ2xt−2 + · · ·+ ϕpxt−p + wt

where xt is the value of the time series at time t, ϕi are the parameters of the model,
and wt is the white noise term. The parameters to estimate are the ϕi values and σ2

w,
the variance of the white noise term. The requirement that xt is stationary imposes
constraints on the values of the ϕi parameters. The model can be estimated using the
method of least squares or maximum likelihood estimation.

6.1.2 Moving Average Model

A moving average model MA(q) assumes that the current value of the time series is a
linear combination of the previous forecast errors. The model can be written as:

xt = wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q

where wt is the white noise term, θi are the parameters of the model, and q is the order
of the model. The MA model is stationary for all values of θi.

6.1.3 Autoregressive Moving Average (ARMA) Model

The ARMA model combines the AR and MA models. The ARMA(p, q) model is given
by:

xt = α +

p∑
i=1

ϕixt−i +

q∑
j=1

θjwt−j + wt

for ϕi > 0, θj > 0 and σ2
w > 0 and the model is causal and invertible. The ARMA model

can be estimated using the method of least squares or maximum likelihood estimation.
Choosing the Order of these Models
There are two steps to choosing the order of the AR and MA models.

Exploratory Data Analysis Prior to fitting models, the data can be analyzed using
ACF and PACF plots[refer to Appendix 6.4]. A general behavior of the ACF and PACF
plots for AR and MA models is as follows:

Model ACF PACF
AR(p) Tails off Cuts off after lag p
MA(q) Cuts off after lag q Tails off
ARMA(p, q) Tails off Tails off

Model Selection The order of the AR and MA models can be selected using informa-
tion criteria such as AIC, BIC, or cross-validation. These criteria balance the goodness of
fit of the model with the complexity of the model. The model with the lowest information
criterion is selected.

10

6.1.4 Autoregressive Integrated Moving Average (ARIMA) Model

Backshift Operator (B) The backshift operator B is defined as:

Bxt = xt−1

So, In general, Bkxt = xt−k. The differencing operator ∇ can be written as:

∇xt = xt − xt−1

∇2xt = (1−B)xt = xt − 2xt−1 + xt−2

For differencing of order d: ∇dxt = (1−B)dxt

ARIMA Model The ARIMA model is a generalization of the ARMA model that can
handle non-stationary data. The ARIMA(p, d, q) model is given by:

ϕ(B)∇dxt = α + θ(B)wt

where ϕ(B) = 1 − ϕ1B − ϕ2B
2 − · · · − ϕpB

p is the autoregressive operator, θ(B) =
1+θ1B+θ2B

2+· · ·+θqB
q is the moving average operator, and α = δ(1−ϕ1−ϕ2−· · ·−ϕp)

and δ = E[∇dxt].
Fitting and ARIMA(p,d,q) model is equivalent to fitting an ARMA(p,q) model to the

data that is differenced to the order d.

6.2 Regression based Methods

A regular regression model is of the form:

yt = β0 + β1x1,t + β2x2,t + · · ·+ βkxk,t + ϵt

where yt is a linear function of the k- predictor variables (x1,t, x2,t, . . . , xk,t), and ϵt is
white noise. This model, while allows for the inclusion of a lot of relevant information
in the form of predictor variables, does not account for the serial dependence like for
instance ARIMA models do. A workaround is to include lagged values of the dependent
variable as predictors. This is known as autoregressive distributed lag (ADL) models.

Yet another approach is to allow the errors from a regression model to contain auto-
correlation. This is often referred to as dynamic regression models. To frame this
problem, we will assume that the residuals follow ARIMA(p,d,q) process. The model can
be written as:

yt = β0 + β1x1,t + β2x2,t + · · ·+ βkxk,t + ηt

(1−B)dϕ(B)ηt = θ(B)ϵt

where ϵt is the white noise term. The error from the regression model (ηt) is modeled
with ARIMA process.

11

6.3 Neural Networks

6.3.1 A brief introduction to Neural Networks

Standard linear regression assumes that the true models are a linear function of the input
variables as discussed in 6.2. This can be written as:

f(x;θ) =
k∑

i=1

θixi = θTx

where x is the input vector, θ is the parameter vector, and k is the number of input
variables. This model does not capture non-linear relationsships. A basic approach
to capture non-linear relations is to assume the models are linear functions of a set of
nonlinear basis functions:

f(x;θ) =
k∑

i=1

θiϕi(x) = θTϕ(x)

where ϕi(x) are nonlinear basis functions and should capture the important non-linear
information regarding the inputs. The choice of basis functions is crucial for the model’s
performance. For example, a polynomial or a kernel basis function can cater to very
specific non-linear relationships.

Neural networks are a generalization of this idea. The basic idea is to use a set of
adaptive basis functions that are learned from the data. We begin by assuming the basis
function has some parameter and then estimate them by minimizing the loss function.
Specifically, in neural networks, each basis function ϕi(x) is assumed to have the following
form:

ϕi(x) = σ(wT
i x+ bi)

where wi and bi are the parameters of the basis function, and σ is the activation function.
The activation function is a non-linear function that introduces non-linearity into the
model. Common activation functions include the sigmoid function, the hyperbolic tangent
function, and the rectified linear unit (ReLU) function.

These basis functions ϕi(x) are called neurons and the parameter wi and bi are called
weights and biases, respectively.

One can then arrange these neurons, as shown in figure 5, in layers to form a neural
network. The first layer is the input layer, the last layer is the output layer, and the layers
in between are called hidden layers. This kind of neural network is called a feedforward
neural network.

6.3.2 Neural Networks for Time Series Forecasting

A feedforward neural network is a poor choice for time series forecasting because it does
not account for the serial dependence in the data. A better choice is to use a recurrent
neural network (RNN) (see figure 6). In a recurrent neural network, the input (x) goes
through a hidden layer (h) and then produces two outputs. The first gets fed back to
the hidden layer and is used at the next timestamp. The second is the output from the
network (or to the next layer).

Another variant of RNN is the Long Short-Term Memory (LSTM) network. LSTM
networks are a type of RNN that are designed to capture long-term dependencies in

12

Figure 5: A two-layer neural network

the data. They have a more complex architecture than standard RNNs and include
mechanisms to remember and forget information over time. LSTM networks have been
shown to be effective for time series forecasting tasks. In this document we will not delve
deep into the details of the architecture but rather look at how one can implement an
LSTM network for time series forecasting.

6.4 Autocovariance and Autocorrelation Functions

The autocovariance function γX(t) of a time series Xt is defined as:

γX(s, t) = E[(Xs − µs)(Xt − µt)] (1)

for all s and t and µ is the mean of the time series.
The autocorrelation function ρX(t) is defined as:

ρX(s, t) =
γX(s, t)

γX(s, s)γX(t, t)
(2)

Partial autocorrelation function (PACF) is the correlation between two variables after
removing the effect of other variables. For a stationary process, xt, PACF (ϕhh) for
h = 1, 2, . . ., is defined as:

ϕ11 = Cor[x1, x0] = ρ(1) (3)

and

ϕhh = Cor[xh − x̂h, x0 − x̂0], h ≥ 2 (4)

where x̂h is the regression of xh on {x1, x2, . . . , xh−1} and x̂0 is the regression of x0 on
{x1, x2, . . . , xh−1}.

13

Figure 6: A Recurrent Neural Network

References

[1] Robert H Shumway, David S Stoffer, and David S Stoffer. Time series analysis and
its applications, volume 3. Springer, 2000.

[2] https://xgboost.readthedocs.io/en/stable/.

[3] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice.
OTexts, 2018.

[4] Adrian Tam. Long short-term memory (lstm) for time series
prediction in pytorch. https://machinelearningmastery.com/

lstm-for-time-series-prediction-in-pytorch/, 2023.

14

https://xgboost.readthedocs.io/en/stable/
https://machinelearningmastery.com/lstm-for-time-series-prediction-in-pytorch/
https://machinelearningmastery.com/lstm-for-time-series-prediction-in-pytorch/

	Data preparation
	ARIMA Model
	XgBoost Model

	LSTM Model
	Model Implementation
	ARIMA Model
	XgBoost Model
	LSTM Model

	Model Comparison
	Conclusion
	Appendix
	Time Series Analysis (Overview)
	Autoregressive Model
	Moving Average Model
	Autoregressive Moving Average (ARMA) Model
	Autoregressive Integrated Moving Average (ARIMA) Model

	Regression based Methods
	Neural Networks
	A brief introduction to Neural Networks
	Neural Networks for Time Series Forecasting

	Autocovariance and Autocorrelation Functions

